博客
关于我
深度学习之LSTM案例分析(三)
阅读量:181 次
发布时间:2019-02-28

本文共 7342 字,大约阅读时间需要 24 分钟。

如何通过堆叠LSTM实现莎士比亚语言生成

背景

在自然语言处理领域,语言生成任务一直是研究热点之一。为了更好地模拟莎士比亚的语言特点,我们采用多层LSTM结构进行语言建模。这种方法利用了LSTM的强大能力,能够捕捉长距离依赖关系,同时避免梯度消失问题。通过堆叠多个LSTM层,我们能够更准确地表示莎士比亚语言的复杂模式。

此外,我们将词汇空间从传统的词袋模型转换为字符级建模。这种方法能够更细致地捕捉语言的微观特征,从而生成更自然的文本。

本文将详细介绍我们的LSTM模型设计、训练过程以及实现效果。


代码实现

1. 数据准备与清洗

首先,我们从互联网下载了大量莎士比亚作品的文本数据,并进行预处理。具体步骤如下:

# 下载并清洗数据print('Loading Shakespeare Data')if not os.path.isfile(os.path.join(data_dir, data_file)):    print('Not found, downloading Shakespeare texts from www.gutenberg.org')    shakespeare_url = 'http://www.gutenberg.org/cache/epub/100/pg100.txt'    response = requests.get(shakespeare_url)    shakespeare_file = response.content    s_text = shakespeare_file.decode('utf-8')    s_text = s_text[7675:]    s_text = re.sub(r'[{}]', ' ', s_text).strip().lower()char_list = list(s_text)

2. 词表构建

接下来,我们从字符级别构建词表。通过统计字符频率,我们得到一个词到索引的映射表,以及索引到词的映射表。

def build_vocab(characters):    character_counts = collections.Counter(characters)    chars = character_counts.keys()    vocab_to_ix_dict = {key: (inx + 1) for inx, key in enumerate(chars)}    vocab_to_ix_dict['unknown'] = 0    ix_to_vocab_dict = {val: key for key, val in vocab_to_ix_dict.items()}    return ix_to_vocab_dict, vocab_to_ix_dictprint('Building Shakespeare Vocab by Characters')ix2vocab, vocab2ix = build_vocab(char_list)vocab_size = len(ix2vocab)print('Vocabulary Length = {}'.format(vocab_size))

3. LSTM模型定义

在LSTM模型中,我们采用多层结构来捕捉复杂的语言模式。模型主要包括以下几个部分:

class LSTM_Model():    def __init__(self, rnn_size, num_layers, batch_size, learning_rate,                 training_seq_len, vocab_size, infer_sample=False):        self.rnn_size = rnn_size        self.num_layers = num_layers        self.vocab_size = vocab_size        self.infer_sample = infer_sample        self.learning_rate = learning_rate        if infer_sample:            self.batch_size = 1            self.training_seq_len = 1        else:            self.batch_size = batch_size            self.training_seq_len = training_seq_len        self.lstm_cell = tf.contrib.rnn.BasicLSTMCell(rnn_size)        self.lstm_cell = tf.contrib.rnn.MultiRNNCell([self.lstm_cell for _ in range(self.num_layers)])        self.initial_state = self.lstm_cell.zero_state(self.batch_size, tf.float32)        self.x_data = tf.placeholder(tf.int32, [self.batch_size, self.training_seq_len])        self.y_output = tf.placeholder(tf.int32, [self.batch_size, self.training_seq_len])        with tf.variable_scope('lstm_vars'):            W = tf.get_variable('W', [self.rnn_size, self.vocab_size], tf.float32, tf.random_normal_initializer())            b = tf.get_variable('b', [self.vocab_size], tf.float32, tf.constant_initializer(0.0))            embedding_mat = tf.get_variable('embedding_mat', [self.vocab_size, self.rnn_size],                                             tf.float32, tf.random_normal_initializer())            embedding_output = tf.nn.embedding_lookup(embedding_mat, self.x_data)            rnn_inputs = tf.split(axis=1, num_or_size_splits=self.training_seq_len, value=embedding_output)            rnn_inputs_trimmed = [tf.squeeze(x, [1]) for x in rnn_inputs]            decoder = tf.contrib.legacy_seq2seq.rnn_decoder            outputs, last_state = decoder(rnn_inputs_trimmed, self.initial_state, self.lstm_cell)            output = tf.reshape(tf.concat(axis=1, values=outputs), [-1, self.rnn_size])            self.logit_output = tf.matmul(output, W) + b            self.model_output = tf.nn.softmax(self.logit_output)            loss_fun = tf.contrib.legacy_seq2seq.sequence_loss_by_example            loss = loss_fun([self.logit_output], [tf.reshape(self.y_output, [-1])],                            [tf.ones([self.batch_size * self.training_seq_len])], self.vocab_size)            self.cost = tf.reduce_sum(loss) / (self.batch_size * self.training_seq_len)            self.final_state = last_state            gradients, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tf.trainable_variables()), 4.5)            optimizer = tf.train.AdamOptimizer(self.learning_rate)            self.train_op = optimizer.apply_gradients(zip(gradients, tf.trainable_variables()))        def sample(self, sess, words=ix2vocab, vocab=vocab2ix, num=20, prime_text='thou art'):            state = sess.run(self.lstm_cell.zero_state(1, tf.float32))            char_list = list(prime_text)            for char in char_list[:-1]:                x = np.zeros((1, 1))                x[0, 0] = vocab[char]                feed_dict = {self.x_data: x, self.initial_state: state}                [state] = sess.run([self.final_state], feed_dict=feed_dict)            out_sentence = prime_text            char = char_list[-1]            for n in range(num):                x = np.zeros((1, 1))                x[0, 0] = vocab[char]                feed_dict = {self.x_data: x, self.initial_state: state}                [model_output, state] = sess.run([self.model_output, self.final_state], feed_dict=feed_dict)                sample = np.argmax(model_output[0])                if sample == 0:                    break                char = words[sample]                out_sentence = out_sentence + char            return out_sentence

4. 模型训练

在训练过程中,我们采用批量训练的方式来提高效率。以下是训练的主要步骤:

num_batches = int(len(s_text_ix) / (batch_size * training_seq_len)) + 1batches = np.array_split(s_text_ix, num_batches)batches = [np.resize(x, [batch_size, training_seq_len]) for x in batches]init = tf.global_variables_initializer()sess.run(init)train_loss = []iteration_count = 1for epoch in range(epochs):    random.shuffle(batches)    targets = [np.roll(x, -1, axis=1) for x in batches]    print('Starting Epoch #{} of {}.'.format(epoch + 1, epochs))    state = sess.run(lstm_model.initial_state)    for ix, batch in enumerate(batches):        training_dict = {lstm_model.x_data: batch, lstm_model.y_output: targets[ix]}        for i, (c, h) in enumerate(lstm_model.initial_state):            training_dict[c] = state[i].c            training_dict[h] = state[i].h        temp_loss, state, _ = sess.run([lstm_model.cost, lstm_model.final_state, lstm_model.train_op],                                       feed_dict=training_dict)        train_loss.append(temp_loss)        if iteration_count % 10 == 0:            summary_nums = (iteration_count, epoch + 1, ix + 1, num_batches + 1, temp_loss)            print('Iteration: {}, Epoch: {}, Batch: {} out of {}, Loss: {:.2f}'.format(*summary_nums))        if iteration_count % save_every == 0:            model_file_name = os.path.join(full_model_dir, 'model')            saver.save(sess, model_file_name, global_step=iteration_count)            print('Model Saved To: {}'.format(model_file_name))            dictionary_file = os.path.join(full_model_dir, 'vocab.pkl')            with open(dictionary_file, 'wb') as dict_file_conn:                pickle.dump([vocab2ix, ix2vocab], dict_file_conn)                if iteration_count % eval_every == 0:                    for sample in prime_texts:                        print(test_lstm_model.sample(sess, ix2vocab, vocab2ix, num=10, prime_text=sample))            iteration_count += 1plt.plot(train_loss, 'k-')plt.title('Sequence to Sequence Loss')plt.xlabel('Generation')plt.ylabel('Loss')plt.show()

5. 训练结果

通过实验,我们发现堆叠LSTM层的模型在莎士比亚语言生成任务中表现出色。生成的文本能够较好地保持原作的风格和语法特点。


总结

通过以上方法,我们成功实现了基于字符级词汇的LSTM模型,并通过堆叠多层LSTM结构,显著提升了莎士比亚语言生成的准确性。这种方法不仅适用于莎士比亚作品,还可以扩展到其他语言的文本生成任务。

转载地址:http://bvqn.baihongyu.com/

你可能感兴趣的文章
nginx+uwsgi+django
查看>>
Nginx-http-flv-module流媒体服务器搭建+模拟推流+flv.js在前端html和Vue中播放HTTP-FLV视频流
查看>>
nginx-vts + prometheus 监控nginx
查看>>
Nginx下配置codeigniter框架方法
查看>>
Nginx之二:nginx.conf简单配置(参数详解)
查看>>
Nginx代理websocket配置(解决websocket异常断开连接tcp连接不断问题)
查看>>
Nginx代理初探
查看>>
nginx代理地图服务--离线部署地图服务(地图数据篇.4)
查看>>
Nginx代理外网映射
查看>>
Nginx代理模式下 log-format 获取客户端真实IP
查看>>
Nginx代理静态资源(gis瓦片图片)实现非固定ip的url适配网络环境映射ip下的资源请求解决方案
查看>>
Nginx代理静态资源(gis瓦片图片)实现非固定ip的url适配网络环境映射ip下的资源请求解决方案
查看>>
Nginx反向代理与正向代理配置
查看>>
Nginx反向代理是什么意思?如何配置Nginx反向代理?
查看>>
nginx反向代理解决跨域问题,使本地调试更方便
查看>>
nginx启动脚本
查看>>
Nginx在Windows下载安装启动与配置前后端请求代理
查看>>
Nginx多域名,多证书,多服务配置,实用版
查看>>
nginx开机启动脚本
查看>>
nginx异常:the “ssl“ parameter requires ngx_http_ssl_module in /usr/local/nginx/conf
查看>>